Paramagnetic oxygen analyzer

PM 2000+

 precise and maintenance-freePlus auto-calibration

Brief description

The PM 2000+ is a precise oxygen analyser for continuous monitoring purposes at an amazing price. Build in a modular housing system, with a modern micro-controller technology, it is specially designed forprocess and ambient air measurements. The analyser is equipped with an auto-calibration functionality and a selfdiagnosis capability and has an RS232 interface. With the programmable auto calibration function it is capable to fulfil a fully automatic calibration by means of the integrated relays. The measuring unit is thermostat temperature controlled to $55^{\circ} \mathrm{C}$. The operation and parameterisation is carried out by means of a user friendly 4 keys and a 16-digit LCD display and also through RS232 interface

Measuring principle

The measurement is based on the paramagnetic characteristic of oxygen. It generates a partial pressure within a strong and non-homogeneous magnetic field which moves a rotatable glass dumbbell within the measuring cell. This small rotation is measured by the projection of a light source on a photodiode via a small mirror on the dumbbell. A small current through a wire around the dumbbell forces the dumbbell to its initial position. This current is amplified and is directly proportional the oxygen concentration.

DKS GmbH Engineering \& Vertrieb Radeberger Straße 21 D-01900 Großröhrsdorf
Tel.: +49 35952 4294-65 Mail: info@dks-engineering.de Internet: www.dks-engineering.com

Housings

Specifications

Measurement range output
Measurement range

Measurement signal
Status output
Output connection

Display

PM 2000+

19" 3 HU rack or table model with or without sample test gas filter and flow display on the front panel (option).
Single or multiple channel versions.
WxHxD: $482 \times 133 \times 245 \mathrm{~mm}$
IP protection class: 20

PM 2100+
1/2 19" portable model optional with filter on the rear.
WxHxD: $235 \times 155 \times 280 \mathrm{~mm}$
IP protection class: 52

PM 2200+
wall-mounted housing Rittal, Single or multiple channel versions.
WxHxD: $380 \times 410 \times 210 \mathrm{~mm}$
IP protection class: 52
free settable by input of parameters between 0-100\% O2
Standard range 0-25\%, 0-100\%, others on request
4-20mA or 0-20mA (max. apparent ohmic resistance 500 Ohm)
2 alarm relays, 1 malfunction relay
pump relay, maintenance
sample gas relay, zero gas relay, test gas relay
for the autocalibration
LCD digital multifunction display, indication of measured value:
100.0 \%O2; Flow 991/h, alarms, malfunction, parameters, total 16 digits

Options

- pressure compensation (electronic or backpressure regulator)
- test gas pump
- sample gas filter
- external flow display (rotameter)
- flow sensor with alarm setting
- NDIR sensors for $\mathrm{CO} 2, \mathrm{CH} 4$ and CO

Design

Materials of gas conducting parts

Gas connections

Power supply

Voltage

Operating conditions

Flow

Gas conditioning
Operating gas pressure
Operating temperature
Calibration

Storage and transport temperature
Relative humidity
Background gas influence

Measuring details

Detection limit
Repeatability
Zero point drift

Temperature influence at zero
Temperature influence span
Pressure influence on zero
Pressure influence span

Flow error

T90-time

PVDF, glass, steel 1.4571, gold, viton, platinum-iridium, epoxy resin, nickel
PVDF bulkhead connection, for hose with inside $\varnothing 4 \mathrm{~mm}$

100-240VAC $50 / 60 \mathrm{~Hz}$

10-90 l/h
necessary for humid and/or corrosive gases, pre-filter required 10-1000 hPa (0.01-1bar)
$5-45^{\circ} \mathrm{C}$
2-point calibration: with gases as desired, menu-controlled, time controlled.
fully automatic AUTOCAL or semiautomatic calibration $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
$0-75 \%$ RH
slight (for guideline data see operating instructions)

PM 2000+

0,01 \% O2
$<= \pm 0,03 \% \mathrm{O} 2$ (time base for gas switch >= 5 min)
$<= \pm 0,1 \% \mathrm{O} 2$ / week (offset)
may be higher during the first days after putting into operation or after longer period of storage or transport
$< \pm 0,05 \% \mathrm{O} /{ }^{\circ} \mathrm{C}$
$< \pm 0,20 \%$ of measured value $/{ }^{\circ} \mathrm{C}$
no influence
1% air pressure change causes 1% change in reading without backpressure regulator (option) or pressure compensation (option)
<= 0,1 Vol.-\% O2 within 10... $90 \mathrm{I} / \mathrm{h}$ with the in-build flow regulator (option)
$<=6 \mathrm{~s}$ at $90 \mathrm{l} / \mathrm{h}$ and gas change from nitrogen to air

